Targeted Advance Care Planning and Multi-Disciplinary Care Using Machine Learning

Jonathan Walter, MD, Hospitalist, Duke University Hospital, Durham, NC
Noppon Setji, MD, Hospital Medicine Medical Director, Duke University Hospital, Durham, NC
Yvonne Acker, RN, BSN, CPHQ, Strategic Services Associate, Duke University Hospital, Durham, NC
Disclosure Information

• Vizient will insert this required Continuing Education information
Learning Objectives

• Describe a machine-learning model to identify patients at risk for mortality
• Explain how the model allows for more efficient use of resources such as in the area of coding and documentation improvement
Targeted Advance Care Planning and Multi-Disciplinary Care Using Machine Learning

Jonathan Walter, MD, Hospitalist, Duke University Hospital, Durham, NC
Noppon Setji, MD, Hospital Medicine Medical Director, Duke University Hospital, Durham, NC
Yvonne Acker, RN, BSN, CPHQ, Strategic Services Associate, Duke University Hospital, Durham, NC
The Current Problem

- Advance Care Planning (ACP) is under utilized
- Only ~1/3 of American adults have completed an advance directive
- Current care processes and documentation are inadequate
- Medical complexity is increasing
- Providers are imperfect prognosticators
- Predictive models have now been developed to assist in clinician prognostication of patients and help identify patients that may benefit from advance care planning
What is Advance Care Planning

• Goals of Care are only part of the conversation
 − DNAR does not convey patient’s values/preferences/goals at the end of life

• Definition
 − “Advance care planning (ACP) is a process that supports adults at any age or stage of health in understanding and sharing their personal values, life goals, and preferences regarding future medical care”

• Goal
 − “The goal of ACP is to help ensure that people receive medical care that is consistent with their values, goals, and preferences”
Benefits of Advance Care Planning

• Support patient self-determination
• Document patient wishes
• Increase family awareness of patient preferences
• Increase patient satisfaction
• Decrease family burden and stress
• Increase likelihood of death at their preferred location
• Increase quality of care at the end of life
• Increase patient comfort and quality of life
Our Solution

• Utilize a validated machine learning model
• Identify high-risk patients to benefit from ACP
• Create a standardized ACP workflow
• Develop a standardized ACP documentation template
• Integrate a multi-disciplinary approach to improve quality of care and outcomes
Project Goals

• Document patient wishes, goals, and care preferences
• Increase family awareness of patient preferences
• Provide the right care at the right time in the right setting
• Increase quality of care at the end of life
• Increase patient comfort and quality of life
Machine Learning Model

- Developed by Duke Institute for Health Innovation
- Predicts risk of current inpatient, 30-day and 6-month mortality
- Based on available information up to the time of admission

Pre-Encounter Data
- Prior diagnoses
- Prior procedures
- Prior encounter information

Emergency Dept. Data
- Medication administration
- Laboratory data
- Vital signs
Workflow

Comorbidity and data assessed on admission → QI Admin reviews High Risk Patients Mon - Fri → Notification by Page/Email → Determine if ACP is appropriate → Yes → ACP Discussion with Patient/Surrogate Decision Makers → Document in .gmacp → No → No ACP intervention → Email reply with reason for exclusion → Pharmacy: Discharge Medication Reconciliation Case Management: Assist with discharge transition including: Medications on discharge, ACP note to facility, Duke Well referral. CDI/Billing: Detailed inpatient and post-discharge review → Pharmacy, Case Management, and CDI/Billing notified
Multidisciplinary Approach

• Case Management
 – Assist with discharge resources
 – Participate in ACP conversations
 – Forward ACP documentation to discharge facility

• Pharmacy
 – Complete discharge medication reconciliation

• Clinical Documentation Improvement
 – Review documentation to ensure patient’s condition and complexity is accurately reflected
Timeline

- Initiated pilot on hospitalist only general medicine teams for admissions 11/18/19 to 2/14/20
- Server updates and COVID-19 paused notifications until 3/26/20
- Pilot expanded to general medicine teaching teams on 3/26/20
Non-Teaching Team Results

Admission Dates: 11/18/19 to 2/14/20

<table>
<thead>
<tr>
<th>Measure</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP Note Completion Rate</td>
<td>52% (16 of 31 notifications sent)</td>
</tr>
<tr>
<td>Code Status Change from Full Code to DNAR</td>
<td>19% (6 of 31 notifications sent)</td>
</tr>
<tr>
<td>Average Days between notifications and ACP Note filed</td>
<td>0 to 1 day</td>
</tr>
</tbody>
</table>

Note: During this same time period, 16 cases were identified that would have met criteria for the Teaching Team and none of them had an ACP Note filed or a Code Status change from Full Code to DNAR.
Non-Teaching Team Results
Admission Dates: 3/24/20 to 6/30/20

<table>
<thead>
<tr>
<th>Measure</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP Note Completion Rate</td>
<td>34% (28 of 82 notifications sent)</td>
</tr>
<tr>
<td>Code Status Change from Full Code to DNAR</td>
<td>15% (12 of 82 notifications sent)</td>
</tr>
<tr>
<td>Average Days between notifications and ACP Note filed</td>
<td>0 to 1 day</td>
</tr>
</tbody>
</table>
Teaching Team Results
Admission Dates: 3/24/20 to 6/30/20

<table>
<thead>
<tr>
<th>Measure</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP Note Completion Rate</td>
<td>22% (20 of 93 notifications sent)</td>
</tr>
<tr>
<td>Code Status Change from Full Code to DNAR</td>
<td>13% (12 of 93 notifications sent)</td>
</tr>
<tr>
<td>Average Days between notifications and ACP Note filed</td>
<td>0 to 1 day</td>
</tr>
</tbody>
</table>
Lessons Learned

• Provider education and input is vital to any project
• Provider feedback continues to help improve and refine our process
• COVID-19 creates additional barriers and challenges to ACP
• Appropriate documentation allows easy reference and continuation of care conversations across different encounters and different providers
• Advance care planning practice patterns expand beyond our patient notifications
Key Takeaways/To Dos

• Takeaways
 – Use of a machine-learning model can aide in directing limited resources to a high-risk patient population
 – Use of a notification system and provider education can increase advance care planning utilization

• To Dos
 – Create an automated notification process
 – Analyze provider interviews to understand current barriers to ACP
 – Improve provider education
 – Expand project to other service areas
Questions?

Contact:
Jonathan Walter, jonathan.walter@duke.edu